
Problems and prospects
for

bidirectional transformations

Perdita Stevens

University of Edinburgh

Keynote for Reversible Computation, July 2020



Part 1

Software Engineering
and its problems



In the beginning was the Software Crisis

1996 Dagstuhl on History of Software Engineering.

In the 1960s, the efficient and timely production and maintenance
of reliable and useful software was viewed as a major problem. In
the 1990s, it is still considered a major problem. The “software
crisis” which was declared three decades ago persists, assuming it
makes any sense to speak of a thirty year crisis. Although most
would admit to some amelioration of the “crisis,” steadily
increasing requirements and ambitions have helped sustain it.

At the NATO conferences of the late sixties, the solution to the
“crisis” was declared to be “software engineering.” This, however,
begged a number of questions. What is the nature of software as a
technological medium? How does software development compare
and contrast with other areas of technological practice. What is
engineering? Is it sensible to speak of engineering software?

Answering these questions has been a difficult and tempestuous
process which continues to this day. Peter Shapiro



The Rise and Fall of the Software Crisis

https://books.google.com/ngrams/

https://books.google.com/ngrams/


The fundamental problem of software engineering



Approaches to the problem

Subtly different, yet all fundamentally the same idea:

abstraction, on every level – high level languages, interfaces,
verification techniques, unit testing...

separation of concerns – e.g., into models

sequentialisation – e.g., YAGNI, bounded small releases.

All about humans

Getting chunks of processing done within the limited capacity of
an individual human brain.



The Software Crisis is dead...

Long live

The Software Capacity Crisis!

hundreds of thousands of unfilled ICT positions in EU

1.6 million ICT professional jobs to fill in EU by 2030

Capacity and hiring top lists of software companies’ concerns

yet unemployment rate for computer science graduates above
that of other STEM subjects!

There is demand – for super-humans.

S., The Future of Programming and Modelling: a Vision (to appear)



The Software Crisis is dead...

Long live

The Software Capacity Crisis!

hundreds of thousands of unfilled ICT positions in EU

1.6 million ICT professional jobs to fill in EU by 2030

Capacity and hiring top lists of software companies’ concerns

yet unemployment rate for computer science graduates above
that of other STEM subjects!

There is demand – for super-humans.

S., The Future of Programming and Modelling: a Vision (to appear)



The Software Crisis is dead...

Long live

The Software Capacity Crisis!

hundreds of thousands of unfilled ICT positions in EU

1.6 million ICT professional jobs to fill in EU by 2030

Capacity and hiring top lists of software companies’ concerns

yet unemployment rate for computer science graduates above
that of other STEM subjects!

There is demand – for super-humans.

S., The Future of Programming and Modelling: a Vision (to appear)



TANSTAAFL

Splitting the overwhelming amount of work into chunks helps a lot.

But the difficulty then becomes integration of the chunks.

Mythical Man Month;

integration (“continuous” or “phase”);

paying off technical debt in sprint-based projects;

MDE e.g. managing projects with multiple DSLs.

Today’s techniques support individuals in temporarily focusing on
one concern. That’s not enough.



In practice, models are not independent



Part 1 conclusion

Separation of concerns

Integration of concerns



Part 2

Bidirectional transformations

bx



Bidirectionality is everywhere!

at least after you start looking at things that way

bx! bx!



Essence of bidirectionality

multiple models that are

live

not orthogonal

bidirectional transformations maintain consistency between models



What’s a model?

Everything’s a model!

A model is an abstract, usually graphical, representation of some
aspect of a system



What’s a model?

Everything’s a model!

A model is an abstract, usually graphical, representation of some
aspect of a system



For example

UML model

database schema

map of user’s navigation between screens

bunch of Java code

bunch of JUnit tests.

A model supports the work of a particular group of people. Ideally,
it records all and only the information they need to do their work.

So, having multiple models is a consequence of separation of
concerns.

A model is a representation of a concern



Models that are live

i.e. may need to be updated at some time in the future.

As opposed to:

ideal refinement-based development, in which you may:

1 develop a model

2 derive a new model from it

3 “throw it over the wall”

4 never touch the original again.

E.g. write the JUnit tests; then freeze them, and write the code.

Mostly, life is not ideal.



Models that are live

i.e. may need to be updated at some time in the future.

As opposed to:

ideal refinement-based development, in which you may:

1 develop a model

2 derive a new model from it

3 “throw it over the wall”

4 never touch the original again.

E.g. write the JUnit tests; then freeze them, and write the code.

Mostly, life is not ideal.



Models that are live

i.e. may need to be updated at some time in the future.

As opposed to:

ideal refinement-based development, in which you may:

1 develop a model

2 derive a new model from it

3 “throw it over the wall”

4 never touch the original again.

E.g. write the JUnit tests; then freeze them, and write the code.

Mostly, life is not ideal.



Models that are not orthogonal

There’s no problem having several live models – if the information
they record is completely independent.

Otherwise, dependencies must be managed somehow.

JUnit ←→ Java

Some changes can be made independently

– e.g. refactor the Java

Others necessitate a change on the other side

– e.g. change the name of a method

There may be many ways to restore consistency

– e.g. change the method name in relevant tests, or delete
relevant tests

Some are better than others!



Models that are not orthogonal

There’s no problem having several live models – if the information
they record is completely independent.

Otherwise, dependencies must be managed somehow.

JUnit ←→ Java

Some changes can be made independently
– e.g. refactor the Java

Others necessitate a change on the other side

– e.g. change the name of a method

There may be many ways to restore consistency

– e.g. change the method name in relevant tests, or delete
relevant tests

Some are better than others!



Models that are not orthogonal

There’s no problem having several live models – if the information
they record is completely independent.

Otherwise, dependencies must be managed somehow.

JUnit ←→ Java

Some changes can be made independently
– e.g. refactor the Java

Others necessitate a change on the other side
– e.g. change the name of a method

There may be many ways to restore consistency

– e.g. change the method name in relevant tests, or delete
relevant tests

Some are better than others!



Models that are not orthogonal

There’s no problem having several live models – if the information
they record is completely independent.

Otherwise, dependencies must be managed somehow.

JUnit ←→ Java

Some changes can be made independently
– e.g. refactor the Java

Others necessitate a change on the other side
– e.g. change the name of a method

There may be many ways to restore consistency
– e.g. change the method name in relevant tests, or delete
relevant tests

Some are better than others!



The two tasks of bidirectional thinking

1 check whether all is well (consistency checking);

2 if not, fix it (consistency restoration).

Choices include

how much to articulate about “all is well”;

how much to automate consistency restoration

what kind of fixes to consider – changing one model, changing
both?

what information to maintain in order to do all this – traces,
history, deltas, edits...?

bx = bidirectional transformation
= artefact for automating those tasks, maybe partially



The two tasks of bidirectional thinking

1 check whether all is well (consistency checking);

2 if not, fix it (consistency restoration).

Choices include

how much to articulate about “all is well”;

how much to automate consistency restoration

what kind of fixes to consider – changing one model, changing
both?

what information to maintain in order to do all this – traces,
history, deltas, edits...?

bx = bidirectional transformation
= artefact for automating those tasks, maybe partially



Spoiler

We do not have

and are not likely to have

one true way to write bx



Choose how much consistency to articulate

What should “all is well” mean for JUnit ←→ Java ?

1 The files compile together without error

2 ... and the JUnit file includes a test for every public method?

3 ... and all the tests pass?

4 ... and a certain coverage criterion is met?

More stringent ⇒

more informative

less flexible

more difficult to restore consistency

more work potentially saved for the user.



Choose how much consistency restoration to automate

Valid choices include:

None

– automatic checking, but fixing done by humans

All

– fully automatic

All except when things go wrong

– fully automatic but may fail

Partial

– e.g. bx improves consistency, but may leave some work for
humans

S., Bidirectionally Tolerating Inconsistency: Partial Transformations, FASE’14



Choose how much consistency restoration to automate

Valid choices include:

None
– automatic checking, but fixing done by humans

All

– fully automatic

All except when things go wrong

– fully automatic but may fail

Partial

– e.g. bx improves consistency, but may leave some work for
humans

S., Bidirectionally Tolerating Inconsistency: Partial Transformations, FASE’14



Choose how much consistency restoration to automate

Valid choices include:

None
– automatic checking, but fixing done by humans

All
– fully automatic

All except when things go wrong

– fully automatic but may fail

Partial

– e.g. bx improves consistency, but may leave some work for
humans

S., Bidirectionally Tolerating Inconsistency: Partial Transformations, FASE’14



Choose how much consistency restoration to automate

Valid choices include:

None
– automatic checking, but fixing done by humans

All
– fully automatic

All except when things go wrong
– fully automatic but may fail

Partial

– e.g. bx improves consistency, but may leave some work for
humans

S., Bidirectionally Tolerating Inconsistency: Partial Transformations, FASE’14



Choose how much consistency restoration to automate

Valid choices include:

None
– automatic checking, but fixing done by humans

All
– fully automatic

All except when things go wrong
– fully automatic but may fail

Partial
– e.g. bx improves consistency, but may leave some work for
humans

S., Bidirectionally Tolerating Inconsistency: Partial Transformations, FASE’14



Levels of bx thinking

for integration of concerns

thinking about consistency explicitly

programming its checking and/or restoration (in a GPL)

programming bidirectionally (in a bx language)



Why a bx language?

You can write a bx in a GPL:

one program to check consistency, e.g. type M × N → Bool

separate programs to restore consistency, e.g. type
M × N → M

But these tasks are tightly coupled, so it pays to integrate their
automation:

avoid duplication of information

guarantee sensible (predictable, dependable...) joint
behaviour.

A bx program records in one artefact how to check and restore
consistency.



Programming bidirectionally

What would a great bx language be like?

What properties would it enforce?

View update: special case of bx, lens (Harmony, Foster/Pierce):

S → V concrete Source, abstract View
s 7→ v i.e. s is consistent with v

s ′ 7→ ? change s to s ′? restoring consistency is easy!
? 7→v ′ change v to v ′? not so easy!

? had better be consistent with v ′ correct
but we’d also like back what was abstracted away

s ′ 7→(v ′, s) lets us get also v ′ = v ⇒ s ′ = s hippocratic



Programming bidirectionally

What would a great bx language be like?

What properties would it enforce?

View update: special case of bx, lens (Harmony, Foster/Pierce):

S → V concrete Source, abstract View
s 7→ v i.e. s is consistent with v
s ′ 7→ ? change s to s ′? restoring consistency is easy!

? 7→v ′ change v to v ′? not so easy!
? had better be consistent with v ′ correct
but we’d also like back what was abstracted away

s ′ 7→(v ′, s) lets us get also v ′ = v ⇒ s ′ = s hippocratic



Programming bidirectionally

What would a great bx language be like?

What properties would it enforce?

View update: special case of bx, lens (Harmony, Foster/Pierce):

S → V concrete Source, abstract View
s 7→ v i.e. s is consistent with v
s ′ 7→ ? change s to s ′? restoring consistency is easy!
? 7→v ′ change v to v ′? not so easy!

? had better be consistent with v ′ correct
but we’d also like back what was abstracted away

s ′ 7→(v ′, s) lets us get also v ′ = v ⇒ s ′ = s hippocratic



Programming bidirectionally

What would a great bx language be like?

What properties would it enforce?

View update: special case of bx, lens (Harmony, Foster/Pierce):

S → V concrete Source, abstract View
s 7→ v i.e. s is consistent with v
s ′ 7→ ? change s to s ′? restoring consistency is easy!
? 7→v ′ change v to v ′? not so easy!

? had better be consistent with v ′ correct
but we’d also like back what was abstracted away

s ′ 7→(v ′, s) lets us get also v ′ = v ⇒ s ′ = s hippocratic



Symmetrise

Why symmetrise?

need to work with models that conceptually overlap

want to choose how stringent the consistency we use is

M
←−
R← M × N

−→
R→ N

Each consistency restoration function must be

correct : really does restore consistency

hippocratic : does nothing if arguments already consistent

with respect to consistency relation

R ⊆ M × N

Together, R,
−→
R , and

←−
R form a bx.



Authoritative model

In this formalisation, one model is authoritative at each consistency
restoration: it does not change.

Informally: its consistency-relevant information overwrites
corresponding information in the other model.

Sometimes, a synchronisation approach, where both models
change, is better.

However, that tends to be more complicated, and there is a danger
of “collapsing” both models into an uninformative consistent state.

Keeping one model unchanged “keeps us honest”.



Undoability, weak and strong

Correctness and hippocraticness are only part of what we want
from a “good” bx.

Consider this sequence of model edits and consistency restorations:

m n state of the models when we come in

m n′ someone edits n to n′

m′ n′ we restore consistency, so m becomes m′

m′ n now someone puts n′ back to n
? n and we restore consistency again.

If you expect ? = m, you expect some kind of undoability

What I didn’t specify: are we assuming m and n consistent?

If yes: weak undoability

If no: strong undoability, aka history ignorance

Unfortunately, either is too much to expect...



Undoability, weak and strong

Correctness and hippocraticness are only part of what we want
from a “good” bx.

Consider this sequence of model edits and consistency restorations:

m n state of the models when we come in
m n′ someone edits n to n′

m′ n′ we restore consistency, so m becomes m′

m′ n now someone puts n′ back to n
? n and we restore consistency again.

If you expect ? = m, you expect some kind of undoability

What I didn’t specify: are we assuming m and n consistent?

If yes: weak undoability

If no: strong undoability, aka history ignorance

Unfortunately, either is too much to expect...



Undoability, weak and strong

Correctness and hippocraticness are only part of what we want
from a “good” bx.

Consider this sequence of model edits and consistency restorations:

m n state of the models when we come in
m n′ someone edits n to n′

m′ n′ we restore consistency, so m becomes m′

m′ n now someone puts n′ back to n
? n and we restore consistency again.

If you expect ? = m, you expect some kind of undoability

What I didn’t specify: are we assuming m and n consistent?

If yes: weak undoability

If no: strong undoability, aka history ignorance

Unfortunately, either is too much to expect...



Undoability, weak and strong

Correctness and hippocraticness are only part of what we want
from a “good” bx.

Consider this sequence of model edits and consistency restorations:

m n state of the models when we come in
m n′ someone edits n to n′

m′ n′ we restore consistency, so m becomes m′

m′ n now someone puts n′ back to n

? n and we restore consistency again.

If you expect ? = m, you expect some kind of undoability

What I didn’t specify: are we assuming m and n consistent?

If yes: weak undoability

If no: strong undoability, aka history ignorance

Unfortunately, either is too much to expect...



Undoability, weak and strong

Correctness and hippocraticness are only part of what we want
from a “good” bx.

Consider this sequence of model edits and consistency restorations:

m n state of the models when we come in
m n′ someone edits n to n′

m′ n′ we restore consistency, so m becomes m′

m′ n now someone puts n′ back to n
? n and we restore consistency again.

If you expect ? = m, you expect some kind of undoability

What I didn’t specify: are we assuming m and n consistent?

If yes: weak undoability

If no: strong undoability, aka history ignorance

Unfortunately, either is too much to expect...



Undoability, weak and strong

Correctness and hippocraticness are only part of what we want
from a “good” bx.

Consider this sequence of model edits and consistency restorations:

m n state of the models when we come in
m n′ someone edits n to n′

m′ n′ we restore consistency, so m becomes m′

m′ n now someone puts n′ back to n
? n and we restore consistency again.

If you expect ? = m, you expect some kind of undoability

What I didn’t specify: are we assuming m and n consistent?

If yes: weak undoability

If no: strong undoability, aka history ignorance

Unfortunately, either is too much to expect...



Undoability, weak and strong

Correctness and hippocraticness are only part of what we want
from a “good” bx.

Consider this sequence of model edits and consistency restorations:

m n state of the models when we come in
m n′ someone edits n to n′

m′ n′ we restore consistency, so m becomes m′

m′ n now someone puts n′ back to n
? n and we restore consistency again.

If you expect ? = m, you expect some kind of undoability

What I didn’t specify: are we assuming m and n consistent?

If yes: weak undoability

If no: strong undoability, aka history ignorance

Unfortunately, either is too much to expect...



Informal example: Java-JUnit again

Account

TestAccount1

TestAccount2

Customer

TestCustomer1

is there a 
test for this 

class?

is this 
testing a 
class?

StartupTest



A possible consistency relation

Account

TestAccount1

TestAccount2

Customer

TestCustomer1

is there a 
test for this 

class?

is this 
testing a 
class?

StartupTest

Consistency: 
for every class C 

there’s a test TestCn; 
for every test TestCn 

there’s a class C



Newbie deletes class Account...

Account

TestAccount1

TestAccount2

Customer

TestCustomer1

StartupTest



...and propagates the change

TestAccount1

TestAccount2

Customer

TestCustomer1

StartupTest

R



Then realises her mistake!

Account

Customer

TestCustomer1

StartupTest

R



And propagates...

Account

Customer

TestCustomer1

StartupTest

R
TestAccount1

Just one. 
No content!



Formalising “consistency-relevant information”

m ∼F m′ ⇔ ∀n ∈ N.
−→
R (m, n) =

−→
R (m′, n)

no differences between m and m′ remain visible on the N side

(their consistency-relevant information is the same already)

m ∼B m′ ⇔ ∀n ∈ N.
←−
R (m, n) =

←−
R (m′, n)

all differences between m and m′ are visible on the N side

(overwriting their consistency-relevant information makes
them the same)

Crucial Fact

m = m′ iff m ∼F m′ and m ∼B m′

Hence, if we pick any transversals for ∼F and ∼B , we can use
them as coordinates for M.

(And dually for N of course.)



Coordinate grid

Pick a transversal, i.e.
MF ⊆ M including exactly
one representative of every
∼F -equivalence class.

Define MB , NF , NB

similarly.

Represent arbitrary m by
the unique (mF ,mB) s.t.
m ∼F mF and m ∼B mB .

mB m

mF

Positions can be empty,
but no position contains
more than one element.



Consistency depends only on MF and NB

mB m

mF

nB n

nF

R(m, n) iff R(mF , nB)



Java-JUnit

For m a set of Java classes:

the ∼F -equivalence class is given by the classnames in m

the ∼B -equivalence class is more complicated...

For n a set of JUnit tests:

the ∼B -equivalence class is given by names appearing in tests
TestNameX

the ∼F -equivalence class is more complicated...



Result of
−→
R depends only on MF and NF

mB m

mF

nB n

nF

n′B
−→
R (mF , nF )

n′F

NB n′F and n′B are new.

n′B must be a row that is consistent with the column given by mF

(there might be one, or several)

n′F might have changed too – need not be nF (indeed those
squares might be empty!)



Result of
←−
R depends only on MB and NB

mB m

mF

nB n

nF

m′B
←−
R (mB , nB)

m′F

NB m′F and m′B are new.

m′F must be a column that is consistent with the row given by nB
(there might be one, or several)

m′B might have changed too – need not be mB (indeed those
squares might be empty!)



The following are equivalent

1 R : M ↔ N is strongly undoable.

2 M and N are full with respect to R.

3 For each m ∈ M and n ∈ N we have

−→
R (m, n) ∼F n

that is,
−→
R stabilises the coordinate grid columns of N, and

←−
R (m, n) ∼B m

that is,
←−
R stabilises the coordinate grid rows of M.



Coordinate representation of models

Informally, those conditions amount to “the information relevant to
consistency is independent of the rest of the information”.

Lovely when you can get it – which is not often.

A bx language that enforced this would be too inexpressive

S., Observations relating to the equivalences induced on model sets by

bidirectional transformations, EASST 49, 2012



Least change, strong and weak

As soon as you have a notion of “small” change, you would like:

a small change on one side causes only a small change on the other

and/or

by limiting the amount of change on one side, you can limit your
exposure to change on the other

Again, it matters whether or not you assume you are starting from
a consistent point.

(Why wouldn’t you? Simultaneously live models – the other side
doesn’t stop working on their model because you are working on
yours.)

Cheney, Gibbons, McKinna, S., On principles of Least Change and Least

Surprise for bidirectional transformations, JOT 16/1, 2017



Problems

each side has information not present on the other: lenses are
not enough

in practice, information relevant to consistency is
interdependent with the rest: can’t insist on strong undoability

“the right” metric depends strongly on your perspective

and you may not want least change wrt it anyway

and btw, computing metric-least consistency restoration is
NP-hard

etc., etc.



Part 2 summary

It’s fun to write down properties you’d like of your bx...

... but you can’t have them (all).

Different bx languages are good at different things.

So we need them to be able to interoperate.

In a setting with lots of models!

That may be related by bx in different languages!



Part 3

Heterogeneity



Bx in the large: problems to work on

bx bx languages

properties

tools

structure

expla-
nations

negoti-
ations

types

between
DSMLs

usability

depend-
ability

in meg-
amodels

multiary

building
hetero-
geneity

encap-
sulation

handling
failure

in sensitive
environments

security

legality

ethics

safety

specificationverification logic



Bx in the large

Going beyond just two models...

... in the bx community we’d like to be able to restore consistency
in collections of models, when any of them changes.

S., Maintaining Consistency in Networks of Models: Bidirectional

Transformations in the Large, SoSyM 19(1), 2020



Example megamodel

MMDesign

Java JUnit

Safety

design conforms to mM

roundtripconforms(design,java)

safeconforms(java,jUnit,safety)



Consistency restoration problem

Given: some models (some authoritative), connected by some
binary bx.

Find: a sequence of applications of the binary bx’s consistency
restoration functions that restores all the consistency relations.

Bad news: mostly impossible.



Consistency restoration problem

Given: some models (some authoritative), connected by some
binary bx.

Find: a sequence of applications of the binary bx’s consistency
restoration functions that restores all the consistency relations.

Bad news: mostly impossible.



Things that can go wrong

there may simply be
no solution

it may not be
reachable by any
sequence of the bx
you have

different sequences
may give different
solutions

MMDesign

Java JUnit

Safety

design conforms to mM

roundtripconforms(design,java)

safeconforms(java,jUnit,safety)

More interestingly, the bx you have may be almost able to do it:

“if only I could apply this one, then fiddle the result a bit, then
apply that one...”



David Wheeler’s Law

All problems in computer science can
be solved by another level of

indirection



Builders

Each model that should be modified automatically is given a
builder

which, on demand, modifies its model to bring it into consistency
with a given collection of its neighbours.

The builder might:

invoke some bx

in an order of its choosing, maybe repeatedly

“fix things up” in between or afterwards

interact with a user

search

anything else appropriate

– provided that in the end it either restores consistency, or fails.



But what invokes the builders?

Observation: restoring consistency in a network of models is very
like building a software system from sources.

Therefore: Adapt the pluto build system (Erdweg et al.), allowing

proven soundness and optimality (in appropriate senses...)

dynamic dependencies

early cut-off

custom stamps to identify when re-checking is needed

S., Connecting Software Build with Maintaining Consistency between Models:

Towards sound, optimal, and flexible building from megamodels, SoSyM 2020



Key decision 1: pull, don’t push

Observation: pushing all changes through a network is disruptive
and unnecessary.

Therefore: instead, select a target, and rebuild only as necessary to
bring it up to date.

That is:

decide which model you want to work on

bring it into consistency with everything relevant to it

including updating those things if necessary

but ignoring anything you can, e.g., any model that just
depends on this one.



Key decision 2: use an orientation model

Observation: no hope of consistency restoration being independent
of which models can be changed, which take priority, etc.

Therefore: provide explicit, inspectable, familiar control over those
things.

E.g.

MMDesign

Java JUnit

Safety

roundtripconforms(design,java)

safeconforms(java,jUnit,safety)



To use megamodel-pluto

Design your megamodel; hence

create an orientation model (just another model: your users
can change it, it lives in your CMS).

For each model you might want to be able to “build”, write a
builder, using a skeleton:

it brings its model into consistency with relevant neighbours,
using relevant bx however required.



Future work: lots, for example

integrating existing model transformation engines for builders
to call on

generating custom stamps (to check when
consistency-relevant information may have changed)

mechanising proof of correctness (with James McKinna)

exploring the horizons, e.g. letting builders negotiate with
their neighbours

explaining failure

practical use!



Future software engineering: deliverable models



Conclusions

Bidirectionality is about integrating separated concerns, by
maintaining consistency between their representations.

This is difficult...

... but holds out the prospect of a new way to develop software,
which may mitigate the software capacity crisis.



More things to work on...

bx bx languages

properties

tools

structure

expla-
nations

negoti-
ations

types

between
DSMLs

usability

depend-
ability

in meg-
amodels

multiary

building
hetero-
geneity

encap-
sulation

handling
failure

in sensitive
environments

security

legality

ethics

safety

specificationverification logic



Questions? and two shameless plugs

MDE Network, starting soon – see my webpage next month

Out this month from CUP

“provides a wealth of excellent advice
tailored to beginning students of
programming. It is language-agnostic,
well structured, and delivered in an
accessible manner. It might as well have
the words ‘Don’t Panic’ in large, friendly
letters on the cover.”

Prof. Jeremy Gibbons
University of Oxford



Aside: Eating own dogfood considered harmful

Hardest thing in SE methods and tools research, especially
logic/verification/PL research:

paying enough attention to your users.

who are they?

what are they trying to do?

what will work for them?

what will they have to know/remember/understand?

what could possibly go wrong?

Can the weakest 20% of your SE class use your work correctly?

If not, why not? And is it OK?



Aside: Eating own dogfood considered harmful

Hardest thing in SE methods and tools research, especially
logic/verification/PL research:

paying enough attention to your users.

who are they?

what are they trying to do?

what will work for them?

what will they have to know/remember/understand?

what could possibly go wrong?

Can the weakest 20% of your SE class use your work correctly?

If not, why not? And is it OK?



Aside: Eating own dogfood considered harmful

Hardest thing in SE methods and tools research, especially
logic/verification/PL research:

paying enough attention to your users.

who are they?

what are they trying to do?

what will work for them?

what will they have to know/remember/understand?

what could possibly go wrong?

Can the weakest 20% of your SE class use your work correctly?

If not, why not? And is it OK?



Aside: Eating own dogfood considered harmful

Hardest thing in SE methods and tools research, especially
logic/verification/PL research:

paying enough attention to your users.

who are they?

what are they trying to do?

what will work for them?

what will they have to know/remember/understand?

what could possibly go wrong?

Can the weakest 20% of your SE class use your work correctly?

If not, why not? And is it OK?



You don’t always want metric least change
R relates UML model m with test suite n, maintaining:

every class in m stereotyped 〈〈persistent〉〉 has a test class of the
same name in n, containing an appropriate (in some specified

sense) set of tests for each public operation

(but n may also contain other tests).

You modify the test class for a 〈〈persistent〉〉 class C, to reflect
changes made in the code to the signatures of C’s methods, e.g.,
say int has changed to long throughout.

R now propagates necessary changes to the model m.

You expect R to perform appropriate changes to the detail of
persistent class C in the model, changing int to long in the
signatures of its operations.

But instead, R removes the stereotype from C! There is no longer
be any consistency requirements relating to C. Shorter edit
distance, but not what you wanted.



In the abstract: we have some model sets

A B

C D

E



and some consistency relations

A B

C D

E
(binary isn’t actually im-
portant today)



but we needn’t draw the universal ones!

A B

C D

E



Some models will be authoritative

A B

C D

E
(always, e.g. UML metamodel, or
right now, e.g. model last edited)


