Keisuke Nakano **RIEC, Tohoku University** RC 2020 @ Online

Involutory Turing Machines

Involution *f*

 $\forall x \in \text{dom}(f). f(f(x)) = x$ Involution (a.k.a. involutory function) A function that is own inverse \Rightarrow I.e., f(x) = y if and only if f(y) = xA particular kind of reversible (\approx injective) function Application of involution Mathematical proofs / cryptographic systems / Bidirectional transformation (mentioned later)

functions $x = y \Rightarrow f(x) = f(y)$

injective functions $f(x) = f(y) \Rightarrow x = y$

involutory functions $f(x) = y \Rightarrow x = f(y)$

Computable

Characterized by Turing Machine (TM) etc.

w/ function semantics [AxelsenGlück16] **Characterized** by **Reversible TM (RTM)**

 \downarrow This work! **Characterized by Involutory TM (ITM)**

RTM : backward-deterministic TM input initial $C_I \xrightarrow{step} step} for step$ Any computable *injective* function can be computed by an RTM.

- RTM always computes an *injective* function
- A universal RTM exists which simulates any RTM.

This work on ITM

ITM : somehow restricted TM Any computable *involutory* function can be computed by an ITM.

- ITM always computes an *involutory* function

Rest of This Talk Involutory Turing Machine (ITM) Definition and Semantics of TM

Results on Reversible TM Definition of ITM Properties of ITM Application of ITM Conclusion

Expressiveness (Tape Reduction / Universality) Relationship with Bidirectional Transformation

Deterministic/Reversible TM Deterministic TM (DTM, or TM simply) (Locally) forward-deterministic TM $(q, a_1, -) \neq (q, a_2, -) \in \Delta$ \Rightarrow a_1 and a_2 are symbol actions w/ different *inputs*

Reversible TM (RTM) (Locally) forward- & backward-deterministic TM $(-,a_1,q) \neq (-,a_2,q) \in \Delta$ \Rightarrow a_1 and a_2 are symbol actions w/ different outputs

[T](first, second, ..., kth) = (one, two, ..., k)Function semantics [AxelsenGlück16] $Input/output \approx initial/final configuration$

Convention.

When $[T](x_1, ..., x_k) = (y_1, ..., y_k)$ implies $x_{i+1} = ... = x_k = y_{j+1} = ... = y_k = \varepsilon$, we may identify the function with $[T](x_1, ..., x_i) = (y_1, ..., y_i)$.

Syntactic Inverse of TM For $T = (Q, \Sigma, q_I, q_F, \Delta)$, $T^{-1} \triangleq (Q, \Sigma, q_F, q_I, \Delta^{-1})$ where $\Delta^{-1} = \{(q_2, a^{-1}, q_1) | (q_1, a, q_2) \in \Delta \}$ $(s_1 \Rightarrow s_2)^{-1} = s_2 \Rightarrow s_1$ $(\leftarrow)^{-1} = \rightarrow, (\bullet)^{-1} = \bullet, (\rightarrow)^{-1} = \leftarrow$ $\begin{pmatrix} 1 & \dots & k \\ i_1 & \dots & i_k \end{pmatrix}^{-1} = \begin{pmatrix} i_1 & \dots & i_k \\ 1 & \dots & k \end{pmatrix}$ **Proposition.** Let *T* be an RTM. T^{-1} is an RTM s.t. $[T^{-1}] = [T^{-1}]$.

Proposition. If the semantics of TM *T* is injective, then there exists an RTM T' s.t. [T'] = [T].

Semantics of non-RTM can be injective.

Proposition implies "an equivalent RTM always exists."

Cororally. Any computable injective function can be computed by an RTM.

Expressiveness of RTM [Axelsen+16]

Involutory TM (ITM) TM $T = (Q, \Sigma, q_I, q_F, \Delta)$ is involutory if $\exists \psi$: involution over Q s.t. $\nleftrightarrow \psi(q_I) = q_F$ $\bigstar (q_1, a, q_2) \in \varDelta \Longrightarrow (\psi(q_2), a^{-1}, \psi(q_1)) \in \varDelta$ q_F

 $\psi(q_1)$

 $\psi(q_I)$

irst

 $\psi(q_F)$ $\psi(q_m)$ $\psi(q_2)$ one

Involutory TM (ITM)

Theorem. Let *T* be an ITM. Then $\llbracket T \rrbracket$ is involutory, i.e., $\llbracket T \rrbracket = \llbracket T \rrbracket^{-1}$ holds.

Expressiveness of ITM

Theorem. If the semantics of TM T is involutory, then there exists an ITM T' s.t. [T'] = [T].

Semantics of non-ITM can be involutory. Imagine a TM that computes bitwise negation by negating bits left-to-right and moving back.

Obviously, this is not an ITM.

Cororally.

 q_I

001

Any computable involution can be computed by an ITM.

Proof of ITM Expressiveness

Theorem. If the semantics of TM *T* is involutory, then there exists an ITM T' s.t. [T'] = [T].

Proof sketch.

Let T be a TM s.t. [T] is involutory. Let d and r be functions s.t. $d(x,\varepsilon) = (x,x)$ and $r(x,y) = (\llbracket T \rrbracket (x), y)$. An ITM T' we want is obtained by concatenating T_d , T_r and their inverses with a single permutation as below.

Due to their injectivity, we have RTMs T_d and T_r s.t. $[T_d] = d_r$ $[T_r] = r$.

Applications to BX

◆ BX: bidirectional transformation ◆ Pair of get: S → V and put: S×V→S ◆ Characterized by pg: S×V→S×V such that pg(s, v) = (put(s, v), get(s)) ◆ Consistency forces involutoriness of pg ◆ pg(pg(s, v)) = (s, v) holds (* for very-well-behaved lens)

Conclusion

ITM always computes involution. Universal involutory Turing machine exists.

- Involutory Turing machine is presented.

 - Any computable involution is computed by an ITM.
 - Permutation rule plays an important role for this.
 - It can be efficiently constructed by Bennet's trick.
- The work is motivated by my BX research.
 - Exact computational model of BX is coming soon.

