
Involutory	Turing	Machines
Keisuke	Nakano	

RIEC,	Tohoku	University	
RC	2020	@	Online

Involution f

Involution	(a.k.a.	involutory	function)
A	function	that	is	own	inverse
I.e.,	f(x) = y	if	and	only	if	f(y) = x
A	particular	kind	of	reversible	(≈	injective)	function
Application	of	involution
Mathematical	proofs	/	cryptographic	systems	/
Bidirectional	transformation	(mentioned	later)

∀x ∈ dom(f). f (f (x)) = x

Overview
functions	

x = y ⇒ f(x) = f(y)

injective	functions	
f(x) = f(y) ⇒ x = y

involutory	functions	
f(x) = y ⇒ x = f(y)

Computable

Characterized	by	
	 Turing	Machine	(TM)	etc.

Characterized	by	
	 Reversible	TM	(RTM)

Characterized	by	
	 Involutory	TM	(ITM)	

w/	function	semantics	[AxelsenGlück16]

↓	This	work!

Prior	work	on	RTM	[AxelsenGlück16]
RTM	:	backward-deterministic	TM

RTM	always	computes	an	injective	function
Any	computable	injective	function	can	be	
computed	by	an	RTM.
A	universal	RTM	exists	which	simulates	any	RTM.

input
≃

output

≃

ste
p

CFCI
initial	
	config.

final	
	config.

step step step stepstep

ste
p

ste
p

ste
p

ste
p

Prior	work	on	RTM	[Axelsen+16]

RTM	:	backward-deterministic	TM	
RTM	always	computes	an	injective	function	
Any	computable	injective	function	can	be	
computed	by	an	RTM.	
A	universal	RTM	exists	which	simulates	any	RTM.

CFCI

input output

initial	
	config.

final	
	config.

≃ ≃step step step stepstep

ste
p

ste
p

ste
p

ste
p

ste
p

This	work	on	ITM

	ITM	:	somehow	restricted	TM
	ITM

	ITM
	ITM	ITM

involutory
involutory

	ITM

Rest	of	This	Talk
Involutory	Turing	Machine	(ITM)	
Definition	and	Semantics	of	TM	
Results	on	Reversible	TM	
Definition	of	ITM	
Properties	of	ITM	
Expressiveness	(Tape	Reduction	/	Universality)	
Application	of	ITM	
Relationship	with	Bidirectional	Transformation	
Conclusion

Turing	Machine	(TM)

Working	on	multiple	doubly-infinite	tapes
Each	tape	has	a	head.
All	left	cells	of	the	head	are		
blank	initially	and	finally.

T = (Q, Σ, qI, qF, Δ)
set	of	states
set	of	tape	symbols	
	 	 	 (except	blank)

initial	state	in Q

final	state	in Q

set	of	transitions

qI
↓

1 f i r s t
↓

2 s e c o n d
:

↓
k k t h

qF
↓

1 o n e
↓

2 t w o
:

↓
k k

step*

Transition	Rule
(q1, a, q2) ∈ Δ

source	state	
in	Q−{qF}

target	state	
in	Q−{qI}

action
symbol	
	 a ≡ s1⇒s2

move	
	 a ≡ ← or • or →
permutation	

	 a ≡ (1 2 … k
i1 i2 … ik)

q1

↓
1 f i r s t

↓
2 s e c o n d

↓
3 t h i r d

↓
4 f o u r t h

q2

↓
1 f o u r t h

↓
2 s e c o n d

↓
3 f i r s t

↓
4 t h i r d

(q1, , q2)(1 2 3 4
4 2 1 3)

Permute	the	order	of	the	tapes	
with	preserving	contents

Deterministic	TM	(DTM,	or	TM	simply)
(Locally)	forward-deterministic	TM

Reversible	TM	(RTM)
(Locally)	forward-	&	backward-deterministic	TM

(−, a1, q) ≠ (−, a2, q) ∈ Δ
⟹ a1 and a2 are	symbol	actions	w/	different	outputs

Deterministic/Reversible	TM

(q, a1, −) ≠ (q, a2, −) ∈ Δ
⟹ a1 and a2 are	symbol	actions	w/	different	inputs

Semantics	of	TM

Function	semantics	[AxelsenGlück16]
Input/output	≈	initial/final	configuration

⟦ T ⟧(first, second, ... , kth) = (one, two, ... , k)

step step step...

run

qI
↓

1 f i r s t
↓

2 s e c o n d
:

↓
k k t h

qF
↓

1 o n e
↓

2 t w o
:

↓
k k

	Convention.	
	 When	⟦T ⟧(x1, ..., xk)=(y1, ..., yk)	implies	xi+1=...=xk=yj+1=...=yk=ε,	
	 we	may	identify	the	function	with	⟦T ⟧(x1, ..., xi) = (y1, ..., yj).

Syntactic	Inverse	of	TM
For	T = (Q, Σ, qI, qF, Δ),

	 	 	 	 	T−1 ≝ (Q, Σ, qF, qI, Δ−1)
where		 Δ−1 = { (q2, a−1, q1) | (q1, a, q2)∈ Δ }
	 	 	 	 	 (s1⇒s2)−1 = s2⇒s1

	 	 	 	 	 (←)−1 = →，(•)−1 = • ，	 (→)−1 = ←
	 	 	 	 	 −1 = (1 … k

i1 … ik) (i1 … ik
1 … k)

Proposition.		Let	T 	be	an	RTM.	
	 	 	 	 	 	 	 	 T−1	is	an	RTM	s.t.	⟦ T −1 ⟧ = ⟦ T ⟧−1 .

	Expressiveness	of	RTM	[Axelsen+16]

Semantics	of	non-RTM	can	be	injective.

Proposition	implies	"an	equivalent	RTM	always	exists."

	Proposition.		If	the	semantics	of	TM	T	is	injective,		
	 	 then	there	exists	an	RTM	T '	s.t.	⟦ T ' ⟧ = ⟦ T ⟧	.

	Cororally.			
	 Any	computable	injective	function	can	be	 computed	by	an	RTM.

CFCI
Backward	
non-determinism

Involutory	TM	(ITM)
TM T = (Q, Σ, qI, qF, Δ) is	involutory	if		
	 	 ∃ψ:	involution	over	Q	s.t.	
	ψ(qI) = qF	
	(q1, a, q2) ∈ Δ ⟹ (ψ(q2), a−1, ψ(q1)) ∈ Δ

qI

↓
1 f i r s t
:

↓
k k t h

qF

↓
1 o n e
:

↓
k k

q1
↓

q2
↓

qm
↓

ψ() ψ() ψ() ψ()ψ()

qF
 | |

qI
 | |

Involutory	TM	(ITM)
TM T = (Q, Σ, qI, qF, Δ) is	involutory	if		
	 	 ∃ψ:	involution	over	Q	s.t.	
	ψ(qI) = qF	
	(q1, a, q2) ∈ Δ ⟹ (ψ(q2), a−1, ψ(q1)) ∈ Δ

qI

↓
1 f i r s t
:

↓
k k t h

qF

↓
1 o n e
:

↓
k k

q1
↓

q2
↓

qm
↓

ψ() ψ() ψ() ψ()ψ()

qF
 | |

qI
 | |

						Theorem.		Let	T	be	an	ITM.	
											Then	⟦ T ⟧	is	involutory,	i.e.,	⟦ T ⟧ = ⟦ T ⟧−1 	holds.

Expressiveness	of	ITM

Semantics	of	non-ITM	can	be	involutory.
Imagine	a	TM	that	computes	bitwise	negation
by	negating	bits	left-to-right	and	moving	back.	

Obviously,	this	is	not	an	ITM.

Theorem.		If	the	semantics	of	TM	T	is	involutory,		
	 then	there	exists	an	ITM	T '	s.t.	⟦ T ' ⟧ = ⟦ T ⟧	.

qI

↓
1 0 0 1

qF

↓
1 1 1 0

 q
↓

1 1 1 0

	Cororally.			
	 	 Any	computable	involution	can	be	computed	by	an	ITM.

Proof	of	ITM	Expressiveness
	Theorem.		If	the	semantics	of	TM	T	is	involutory,		
	 	 then	there	exists	an	ITM	T '	s.t.	⟦ T ' ⟧ = ⟦ T ⟧	.

Proof	sketch.
	 Let	T	be	a	TM	s.t.	⟦T ⟧	is	involutory.
	 Let	d	and	r	be	functions	s.t.	d(x, ε) = (x, x)	and	r(x,y) = (⟦T⟧(x), y).
	 Due	to	their	injectivity,	we	have	RTMs	Td	and	Tr	s.t.	⟦Td⟧=d,	⟦Tr⟧=r.
	 An	ITM	T '	we	want	is	obtained	by	concatenating	Td,	Tr	and
their	inverses	with	a	single	permutation	as	below.

x

ε

x

x

⟦ T ⟧(x)

xTd Tr Tr
−1 Td

−1⟦ T ⟧(x)

x

⟦ T ⟧(x)

⟦ T ⟧−1(x)
⟦ T ⟧(x)

ε

⟦ T ⟧(x)
=

Applications	to	BX

BX:	bidirectional	transformation
Pair	of	get : S → V	and	put : S×V → S
Characterized	by	pg : S×V→S×V	
such	that	pg(s, v) = (put(s, v), get(s))
Consistency	forces	involutoriness	of	pg

pg(pg(s, v)) = (s, v)	holds	(※	for	very-well-behaved	lens)

S V
	A,X,300	
	B,Y,200	
	C,X,400	
				:	

	A,300	
	C,400	
		:

get

put
100

100

Conclusion
Involutory	Turing	machine	is	presented.
ITM	always	computes	involution.
Any	computable	involution	is	computed	by	an	ITM.
Permutation	rule	plays	an	important	role	for	this.
Universal	involutory	Turing	machine	exists.
It	can	be	efficiently	constructed	by	Bennet's	trick.

The	work	is	motivated	by	my	BX	research.
Exact	computational	model	of	BX	is	coming	soon.

