
Hermes: A Language for Lightweight Encryption

Torben Ægidius Mogensen

RC 2020

Background: Lightweight Encryption

Lightweight: Meant to be fast.
Symmetric key: Same key used for encryption and decryption.
Used in embedded systems, browsers, etc.
Must be resistant to side-channel attacks (memory, time, . . .).
Examples: AES, speck128, RC5, Blowfish, . . .

Why Use a Reversible Language?

Same code for encryption and decryption – you only need to
write the encryption function, decryption comes for free.
Leaves no garbage data (unless explicit) – partial protection
from memory-based side-channel attacks.

Why Not Use Janus?

Janus is a reversible imperative language, and some experiments
writing crypto functions have been done, but Janus has some
limitations for this use:

Not resistant to timing-based attacks: Janus-style conditionals
and loops timing depend on data.
No distinction between secret and public data, so no control
over leaks.
Only one integer type (of unspecified size). This can easily be
fixed, though.

Introducing Hermes

A reversible, imperative language borrowing elements from
both Janus (reversible updates and procedures) and C
(low-level bit manipulation, explicit integer sizes, syntax).
Type system distinguishes secret and public data
Operations on secret data use time that does not depend on
the actual values.
Rotates added as reversible updates.
Formally specified type system and run-time semantics.
Several implementations: reference interpreter (not secure, but
follows semantics closely), compiler to C (assumes secure C
compiler), compiler to WebAssembly (assumes secure
compiler).

The Hermes Type System
Does information-flow analysis similar to binding-time analysis, but
with additional restrictions to ensure reversibility and make
execution time independent of the values of secret data. Details:

Variables are by default secret, but can be declared public.
Integers are 8-, 16-, 32-, or 64-bit unsigned.
Arithmetic operations classified as constant or variable time.
Operations on secret data must be constant time. Examples:
+, <<, and ∧ are constant time, / and % are variable time.
Array sizes and indices must be public (since caching may
affect lookup time).
Loop counters and loop bounds must be public.
Aliasing restrictions ensure reversibility of updates and
parameter passing.

Formal type system specification in paper.

Control Structures

Limited to those commonly used in light-weight encryption:

For loop (public bounds and counter). Arbitrary reversible
updates of counter (as long as no secret data involved).
Conditional updates and swaps. Uses bitmasks to ensure
constant time, so they can be used on secret data.
Reversible procedure calls (call and uncall) with
call-by-reference parameters. Aliasing restrictions to ensure
reversibility.

Example: RC5 Core in C (Encryption Only)

#def ine ROL(x , r) ((x<<r) | (x>>(32−r)))

void RC5_ENCRYPT(WORD ∗pt , WORD ∗ct)
{

WORD i , A=pt [0]+S [0] , B=pt [1]+S [1] ;

f o r (i = 1; i <= 12; i++)
{

A = ROL(A ^ B, B) + S[2∗ i] ;
B = ROL(B ^ A, A) + S[2∗ i + 1] ;

}
ct [0] = A; ct [1] = B;

}

Rotate not built-in, so defined in macro.
Not obviously reversible.

Example: RC5 Core (Hermes)
rc5 (u32 ct [] , u32 S [])
{

u32 A, B;
A <−> ct [0] ; B <−> ct [1] ;
A += S [0] ; B += S [1] ;
f o r (i =2; s i z e S) {
A ^= B; A <<= B; A += S[i] ;
B <−> A;
i++;

}
ct [0] <−> A; ct [1] <−> B;
}

Rotate (<<=) is built into Hermes.
Obviously reversible (only reversible operations used, encrypted
text replaces plaintext).
Loop is “rolled” by using swap.

Example: Speck128 (Hermes)
speck128 (u64 ct [] , u64 K[])
{ /∗ with on−the−f l y key expansion ∗/

u64 y , x , b , a ;
y <−> ct [0] ; x <−> ct [1] ; b += K[0] ; a += K[1] ;

c a l l Rs(x , y , b) ;
f o r (i =0; 32) {

c a l l Rp(a , b , i) ; i++; c a l l Rs(x , y , b) ;
}
/∗ key un−expansion ∗/
f o r (i =32; 0) { i−−; unca l l Rp(a , b , i) ; }
y <−> ct [0] ; x <−> ct [1] ; b −= K[0] ; a −= K[1] ;

}

Rs(u64 x , u64 y , s ec r e t u64 k)
{ x >>= 8; x += y ; x ^= k ; y <<= 3; y ^= x ; }

Rp(u64 x , u64 y , pub l i c u64 k)
{ x >>= 8; x += y ; x ^= k ; y <<= 3; y ^= x ; }

Limitations and Proposed Extensions

Some limitations were encountered when using Hermes to
implement some standard cyphers:

Speck128 required two copies of a procedure (secret and public
parameters). Proposed extension: Read-only parameters.
AES uses secret values to index arrays. Proposed extension:
Cached arrays.
AES uses if-then. Emulated using loop: Counter starts at
entry condition and ends at 0, subtract exit condition from
counter after loop body.
Key expansion (AES, Blowfish) is not always reversible.
Solution: Use garbage array.

Other Proposed Extensions / Future Work

Sized Boolean types (guaranteed to be all 0 bits or all 1 bits).
More control structures such as if-then-else. Public control
only.
Call-by-value-result for scalar parameters. Better performance
and indistinguishable from call-by-reference due to aliasing
restrictions.
Global variables. Need to extend aliasing restrictions.
Partial evaluation to eliminate conditional jumps and enable
compile-time index and zero checks.
Larger integer sizes.

