
Inverse Problems, Constraint
Satisfaction, Reversible Logic,

Invertible Logic and Grover Quantum
Oracles for Practical Problems

Marek Perkowski

Department of Electrical and Computer Engineering

Portland State University

Friday, July 10th 2020

What is an
Oracle?

 Technical aspects can be found in the paper and its references

 Here I want to concentrate on fundamental ideas and our philosophy

 So that everybody can start using these ideas in their related areas of
research

a
b

c
d

1
1

1

1
1

1

1

1

1

1

Classical Boolean Circuits propagate
signals only from inputs to outputs

1

1

1

1

1

1

1

A Boolean function with one output we will call an Oracle

Oracle is a fundamental concept in Grover Algorithm, which is the famous
quantum algorithm with many applications.

Propagating signal through a combinational circuit from input to output is called
evaluation of the oracle.

With input combination a=1,b=1,c=1,d=1 we need to propagate signal
only once through this oracle to obtain value “1” on output.

What is an Oracle in Quantum Computing?

The Essence of
Quantum

Algorithm of
Grover

A gold ball in a box or a miracle of a quantum
algorithm

• We have one gold ball in a black box and 99 black balls.

• We do not know anything about what is inside the box, other that
there is a gold ball inside.

• We reach to the box, if the ball is gold we are happy, otherwise we
remove the black ball from the box and reach again.

• We repeat this until we find the gold ball.

• In the best case we find the ball in the first attempt, in the worst
case - in the attempt number 100.

• On average we need to reach 50 times to the box.

• In quantum we need to reach only 100 =10 times to find the gold
ball.

• Why it is so?

The answer is quantum superposition or
quantum parallelism

Classical Gold Ball (illustrated with 4 balls)

1 2
3 4

3

We use a sequential search algorithm in a non-organized (uninformed) database (space)

Quantum Gold Ball

1

We use a parallel search algorithm using superposition in Hilbert Space

2

4

4 processors

Black balls are shrinked

Gold ball grows

Initial quantum state

3

Processor
for ball 1

Processor
for ball 2

Processor
for ball 3

Processor
for ball 4

First iteration of
Grover Loop

Second iteration
of Grover Loop

time

Measurement

The
winner is

Special
Controller

Classical
Computer

Initialization Calculations Measurement

Problem
specific data

Quantum states in
Hilbert Space

Sequential pulses that control
qubit transformations

1000 qubits = 21000 “processors”

Quantum states in
Hilbert Space

Classical
binary States

Grey Rectangle
here is a Hilbert
Space

Boolean
Algebra

Quantum
Mechanics

Modern Quantum Computer is a Hybrid Machine

Conclusion on Grover

• Power of quantum computing is in very high
parallelism.

• Having 2 particles is equivalent to having 4
computers.

• Having n particles means that we have a parallel
computer with 2n processors.

• Now there are universal quantum computers
with 100 qubits (particles).

• This means 2100 processors working in parallel.
• But this parallelism is not for all problems.

Let us go back to oracles

• Now the gold ball is a “1”, the black balls are the
“0”.

• I want to find for which combination of input
a,b,c,d the output is 1.

• I do not know what is the function, I can only
guess the inputs and check the output.

• This is like a testing problem.
• I give one minterm at a time.
• In the worst case I need to test 16 minterms.
• In the best case I need to test 1 minterm, on

average I need 8 minterms.
• Grover will find the solution in 16 = 4 tests.

1

0 0 0 0

False
minterm

True
minterm

0 0 0 0

0 0 0 0

0 0 0

Boolean Function formulation of the
Gold Ball problem

1. Assume that the oracle circuit of function F2 is just a tree of two-input AND gates with
64 inputs in total.

2. To find the 1 of function, the oracle in classical logic would be evaluated 264 number of
times.

3. Grover Algorithm would evaluate the oracle “only” 2^ (64/2) = 232 times which may be
also not practical.

4. However, in Invertible logic in which one propagates the signals from output to inputs,
the Invertible Logic method would need only one evaluation of the oracle realized with
invertible gates

a,b\c,d

Inverse
Problems

Inverse Problems
for functions

a
b
c
d
e
f
g
h

1
2
3
4
5
6

What are all letters that

map to number k ?

Inverse Problems
for relations

RELATION

a
b
c
d
e
f
g
h

1
2
3
4
5
6

• What are all letters that

map to number k ?

• Is characteristic function
satisfied?

a

b c 1
2

3

d

4

5

e

f

6

g

h

domain
co-domain

F
=
1
1
1
1

Characteristic
function

Examples of Inverse Problems solved
by Invertible Logic

adder

1

2
? adder

1

2
3

adder

?

?
3 adder

0

3
3

adder

1

2
3

adder
0

3
3

……

… but also…. Generalized Inverse Problems

adder

1

?
3 adder

1

2
3

multiplier

?

?
15 multiplier

5

3
15

multiplier

3

5
15

multiplier
15

15

1

……

1. Cryptography
2. Quantum

cryptography
3. Post-quantum

cryptography

Integer Factorization

Signal propagation in all directions

Reversible
Logic

Notation for Classical Boolean Logic Gates

and Invertible Logic Gates

a a

a

b
ab

a
b

a * b

INVERTER
AND

EXOR

OR

a
b

a + b

These gates propagate
from inputs to outputs

Notation for Reversible Logic Gates

a a

a

b

a

ab

a

b

a

abc

b
c

a a

a

Inverter

a

b ab

Controlled-NOT
or Feynman

Gate

a

c abc

.

.
a

b b

.

Controlled-
Controlled-NOT
or Toffoli Gate

These gates are in reversible logic. Propagate from input
to output or from output to input.

In quantum realization they
allow for superposition and
entanglement

Reversible Circuits from Reversible
Gates

Truth Tables

Schematic Diagram

These are reversible
functions, one-to-one
mappings or
permutations.

These are also
reversible gates from
which reversible
circuits are composed.

• This is an example of a
circuit created from
reversible gates
without ancilla bits.

• The corresponding
function is reversible.

Hadamard Transform

Single qubit H

H

H

Parallel connection of

two Hadamard gates is

calculated by Kronecker

Product (tensor product)



 1 1 1 1

 1 -1 1 -1

 1 1 -1 -1

 1 -1 -1 1

1/2

=

=

Here I calculated Kronecker

product of two Hadamards

Hadamard Transform

H

H

|0

|0

1/2|00+1/2|01+1/2|10+1/2|11

After vector of Hadamards we

have equal superposition of all

states from my problem space

Invertible
Logic

1

a
b

c
d

1 1

1

1
1

1

1

1

1

1

What is Invertible Logic?
1. Invertible Logic algebraically is exactly the same as classical Boolean Logic.
2. The only difference is that the invertible logic CIRCUIT can just propagate signals:

1. From inputs to outputs
2. From outputs to inputs
3. From any subset of inputs and outputs and internal signals in any direction.

3. Invented by Professor Datta from Purdue as a result of investigation of Deep
Recursive Neural Nets.

So now, in only one evaluation of oracle we find the
solution a=1,b=1, c=1,d=1. F = abcd.

• For n=64 variables the quantum Grover Algorithm will need to evaluate the
Oracle 232 times. NOT GOOD.

• Invertible Logic will find solution in only one evaluation of oracle.

This is an example of
Inverse Problem

Few important points

• The creator of the oracle does not know the
function like we can see it in a Karnaugh Map.

• He can create the oracle as a circuit without
knowing the function.

• This oracle can be evaluated using:

a. A classical Boolean Oracle

b. A Quantum Oracle

c. An Invertible Logic Oracle.

How Invertible Logic works?

1 1
1

1

0 0
0

0

0
0
1

0
1

0

Deterministic
propagation

Non-deterministic
propagation

Similarly we can analyze any Boolean
Gate or block such as adder

How Invertible Logic works?

• Invertible Logic solves Inverse Problems.

– Graph Coloring

– Integer Factorization

– Cryptology

– Bitcoin

– Puzzles

– Electronic Design Automation

– Inverse Kinematics

Fig. 16

And every problem described by an oracle

• Invertible Logic is a general concept
• It is in principle not related to any

technology

A Dream of
Universal Method

“to Solve All
Problems”

Old History of Universal Method for Problem Solving

Raymond Lullus (1232-1316)

Rene Descartes (1596-1650)

George Boole (1815-1864)

Stanley Petrick
(1931-2006)

Claude Shannon
(1916-2001)

Pyne and McCluskey

Universal Method
Mappings, syllogisms, graphs, MV logic

Every Problem can be reduced to a
single Algebraic Equation

Every Problem can be reduced to a
single Boolean Equation

Many, many papers

SAT solvers and NP
theory

Oracles

The research presented in this lecture

Linear algebra

Symbols, diagrams, relations

Boolean algebra

Every Problem can be reduced
to solving an oracle

Grover

George Boole said:

1. Describe a problem by a set of simple logic
equations.

2. Convert the set of these equations to a single
logic equation.

3. Solve this equation to get all answers.

“universal method” to solve logic problems

History and Ideas
Hopfield Nets

Boltzmann
Machines

Deep
Learning

Boltzmann
Machines

Invertible
Logic

Magnetic Spin
Technology

Inverse Problems

Constraints
Satisfaction
Problems

Oracles

Generalized
Oracles

Optimization
Problems

PSU
Methodology to
Solve Problems

Perkowski
1981-2020

Classical
Boolean Logic

Grover Algorithm

Quantum Walk

Quantum
domain

Prolog
Software

Quantum
Invertible
Logic

CMOS
FPGA

Magnetic
Spins

Other non-
quantum

nanotechnologies

What is my achievement?

• People who work on Invertible Logic do not have
a methodology to develop oracles.

• We combine our methods of classical, reversible
and invertible logic to build a very large class of
oracles and reduce problems from various areas
to building oracles.

• Optimization Problems are reduced to sequence
of oracles with modified constraints.

Constraint
Satisfaction

Problems

Constraint Satisfaction
• Given is a set of arithmetic, Boolean, Predicate and

other constraints on a set of variables.

• Find all vectors of values of variables that satisfy all
constraints

• Given is a set of arithmetic, Boolean, Predicate and other
constraints on a set of variables.

• Find all vectors of values of variables that satisfy as many as
possible constraints

• Given
1. is a set of arithmetic, Boolean, Predicate and other constraints on a set of variables

2. Cost function.

• Find all vectors of values of variables that satisfy all constraints AND optimize the
cost function

Optimization

Constraint Satisfaction Problems
• Graph Coloring
• Maximum Clique
• Maximum Independent Set
• SAT and MAX-SAT
• 8 Queens
• Logic Puzzles
• Integer Linear Programming
• Partition Calculus Problems
• POS to SOP conversion
• FPRM Minimization

• Two-level logic minimization
• Finite State Machine

Minimization
• FSM encoding
• Concurrent encoding and

minimization of FSM
• Ashenhurst-Curtis Decomposition

of Logic functions.
• Minimum Set of Support
• Rule Minimization
• Binate Covering
• Unate Covering
• Logic methods of Machine

Learning.
• Generalized Traveling Salesman
• Generalized Knapsack
• Shortest Path and several robot

planning tasks

Yiwei Li

Sharavana
Kumar, visitor
from India

Perkowski

Peng Gao

Wei Zhang,
visitor from
China

Wenjun
Hou, high

school Jacob Viertel from
Germany

• Test generation
• Cryptography
• Logistic

problems
• Non-linear

Algebraic
equations

Example of CSP – Graph Coloring

This graph colored
with one color

These two graphs need two
colors

This graph G1 needs
three colors

Oracle for coloring
graph G1

1

2 3

a

b
c

Chromatic
number of our
graph is 3 because
we cannot color it
with 2 colors a
and b

Example of CSP – Graph Coloring
Oracle for coloring

graph G1

1

2 3

a

b
c

Our methodology creates
such general oracle from
the specification

Standard
Boolean
Gates

Quantum
Circuit

FPGA

Reversible Logic

Backtracking
Simulator in
PROLOG

Standard Boolean
Gates converted to

Hamiltonians

FPGA with Random
Number Generators

IBM
quantum
computer

Quantum
Simulator

Linear
Programming

Our Methodology – what we
do with the oracle?

We think about gates and blocks as

characteristic functions or relations

Think about a gate (a block, a
Hamiltonian) as a little processor
that likes to minimize its energy

1
1

0

I like it. I have
minimum energy, I
am happy, let us keep
my state this way

1
1

0 I like it. I have
minimum energy, I
am happy, let us keep
my state this way

1
1

1 I hate it. I do not
have minimum
energy. I need to
change signals.

1
1

0

0
1

1

I am happy again

Methodology to solve
Constraint Satisfaction

Problems

and
Optimization Problems

based on
Generalized Oracles

1. Bottom-up rather than Top-Down
2. Gates and blocks, not Unitary or Permutative Matrices
3. Use libraries
4. Blocks: logic, arithmetic, predicates, problem-specific (like controlled

counters)
5. Subset-of-set, versus permutative, versus mappings, versus combinations

without repetitions, etc.
6. Encoding of data (short codes, one-hot, thermometer, etc)
7. Calculate abstract complexity such as number of iterations of oracle.
8. Calculate detailed complexity in terms of number of qubits, number of

gates, number of pulses, etc.
9. Reusing of problem reductions, design tricks and verified blocks
10. Special synthesis algorithms for symmetric functions, ESOPs, PSOE,

factorized forms, adders, controlled-adders, constant-multipliers,
comparators, etc. = we use engineering design practices.

11. Using QSHARP, QISKIT, QUIPPER
12. Using Prolog for Oracle Simulation.
13. Ternary logic.

Key points of our methodology

Grover
Algorithm and

Quantum
Oracles

Second

Example

oracle

Inversion by mean

One repetition of GroverLoop for 2-SAT Problem, full circuit has two

0
1
2
3
4
5
6
7

Weight 1

Weight 2

Weight 4

Weight 8

Weight 16

2+1=3

16+4+2+1=23

16+8+4+2+1=31

4+2+1=7

Numbers for solutions

Problem has 4 solutions, as

shown in Truth Table 2.2.

Remember

weights

Phase of our 4 solutions is different

Magnitude of our 4 solutions is
amplified

32

• After vector of
Hadamards all
solutions are
equally probable

• After oracle
solutions are in
negative phase

1/2|00+1/2|01+1/2|10+1/2|11

This would be for 2 variables Superposition RESULTS OF
FIRST

ITERATION

Magnitude of our 4 solutions is
amplified

Let us compare states after first and second iteration

3 7 31 23
Even measuring now the
probability of finding one
of solutions is high

Measuring after two iterations the probability of

measuring one of solutions is very high

Grover for Graph
Coloring

 A Simple Graph Coloring Problem

2

1

3

4

Two wires for color of node 1

Two wires for color of node 2

Two wires for color of node 3

Two wires for color of node 4


Gives “1” when nodes 1 and

2 have different colors

 

12 13 23


24


34

Value 1 for good coloring

We need to give all

possible colors

here

F(x)

Sequential Generator and Oracle for Graph Coloring


Gives “1” when nodes 1 and 2 have
different colors

 

12 1  3 2  3


2  4



3  4

Value 1 for good coloring

We need to give all
possible colors here

F(x)

Counter
with 2 8
states

Sequential Generator

Oracle

Discuss naïve non-

quantum circuit with a

full counter of minterms

Hypothetical
Parallel

 Computer
for Graph Coloring

and
28 combinational

oracles

  

12 13 23



24



34

Value 1 for good coloring

F(x)

Oracle number 0

  

12 13 23



24



34

Value 1 for good coloring

F(x)

Oracle number 2 8

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

28 combinational
oracles

In case of quantum circuit,
combinational parallelism

is realized by superposition
of states.

Circuit calculates on 2n

states at the same time

Simple Graph Coloring Problem

    

Value 1 for good coloring

We need to give all
possible colors here

H

H

H

H

H

Give Hadamard
for each wire to
get
superposition of
all state, which
means the set of
all colorings

|0>

|0>

|0>

Now we will generate whole Kmap at once using
quantum properties - Hadamard

f(x)

Now we have
quantum oracle
with quantum
reversible gates

|0>

|0>

……

12
1  3 2  3 2  4 3  4

F(x)

From Classical to Quantum Oracles

1. Non-reversible,

2. Built from standard

gates like

AND,OR,EXOR,

NOT.

3. Calculate

candidates

sequentially

1. Reversible,

2. Built from standard

quantum gates like

Toffoli, CNOT, NOT.

3. Calculate candidates

in parallel, thanks to

quantum

superposition

Classical Oracle Quantum Oracle

Reducing
Optimization Problems

to
Decision Problems

with
Modified Oracles

Grover for
Minimum Set of
Support Problem

Hybrid Classical-Quantum
Computer creates a

sequence of modified
oracles for Grover

IDEA

Example: Minimum Set of Support

Minimum Set of
Support Problem

Machine Learning

Logic Synthesis

Unate Covering

Binate Covering

Rule Simplification ACD Decomposition

Test Minimization

POS SOP
conversion

SOP Minimization

Petrick Function

Fundamental
Algorithms

Example: Minimum Set of Support
Karnaugh Map of an
incomplete function of 4
variables a,b,c,d.
(Mathematically a relation)

From Relational
Specification to Set of
simple Boolean
Equations

ab\cd

From Individual Equations to a single equation

(a+b).(a+c+d).(a+d).(a+c+d).(a+b).(a+b+c).(a+d)
.(a+b+c).(a+b)

(a+b).(a+d)

Local
Equations of
Boole

Single
Equation
of Boole

Using Laws of Boolean Algebra

Oracle a + bd
POS SOP

solution

QUANTUM

CLASSICAL

Encoding and explanation of Grover Oracle for this problem

ab\cd

This cell 1000
is encoding of

solution a

 (a+b)

0

0 0 0 0

0

a = 1000
b = 0100
c = 0010
d = 0001
ab = 1100
acd = 1011

ENCODING

(a+b).(a+d) Oracle a + bd
POS SOP

ab\cd

Solution a

Solution bd

0

0 0 0 0

0

 (a+d)

1 1
1 1 1 1
1 1 1 1

Finding solution a we want to
exclude all included in a,
such as ab, ac, abc, abcd

Idea of modifying oracles

Grover Oracle for all solutions to this problem

(a+b).(a+d)  0
= (a+b).(a+d)

a

b
c

d

0

0

0

a
a b  0

(a+b)

(a+d)

This oracle would find all solutions to
problem but most of them would be
non-minimal

Use De Morgan Rule

a = 1000
b = 0100
c = 0010
d = 0001
ab = 1100
acd = 1011

ENCODING

First Grover Oracle for this problem

Set
threshold
to 1

ab\cd

Solution a

Solution bd

We find

solution a

with the
cost of 1

0

0 0 0 0

0

Controlled adder
of 1

Final oracle output

First Grover Oracle for this problem

Set
threshold
to 1

• We find solution a
with the cost of 1

• We remove all
solutions included
in a, such as ab, ac,
abc, etc

ab\cd

Solution a

Solution bd

0

0 0 0 0

0

0 0 0 0
0 0 0 0

Final oracle output

Second Grover Oracle for this problem

|1

We remove solution a
from the set of solutions

Block B

ab\cd

Solution a

Solution bd

Set
threshold
to 2

1 1 0 0

0

0

Final oracle output

Third Grover Oracle for this problem

ab\cd

0 0
0

0 0

0 0

0

0

0
0 0

0
0

0
0

• There is no solution
• Grover gives

something random,
every time different.

• We can verify or we
can run earlier
Quantum Counting to
count number of
solutions

Quantum Grover

Classical FPGA

Invertible FPGA

Spin and other nano-
technologies

Quantum Hopfield Neural
Network -based

Invertible
Quantum

Small
QHNN

Small
QHNN

Small
QHNN

The idea of Generalized
Oracle is central to all
these approaches

Conclusions
• Presented approach allows to solve all Constraint

Satisfaction Problems.

• Optimization problems are solved by sequence of CSP
with modified oracles.

• Oracles can be built in several technologies:
1. FPGA,

2. magnetic spins

3. quantum.

• Quantum oracles use reversible logic.

• Invertible oracles use invertible logic.

• In FPGA we can model both classical and invertible
logic oracles.

Conclusions (cont)
• When FPGA is used for invertible logic the most

important is to create a very high quality Random
Number Generator.
– These are subjects of our research

1. Commercial Quantum RNG based on Hadamard Gates
2. LFSR, EXOR forest, jitter generators
3. FPGAs with analog-like random number generators.

• FPGA realizations
• Prolog Simulations
• Quantum realizations of Grover Methodology
• Quantum realizations of Invertible Logic with QHNN

(Quantum Hopfield Neural Net)

OUR RESEARCH

Generalized
Oracles

Approach

Neural
Networks

Quantum
Neural

Networks

Classical
Digital Circuit

Design

Reversible
Digital Circuit

Design

Quantum
Digital Circuit

Design

Magnetic Spin
Technology

Invertible Logic

Inverse
Problems

Optimization
Problems

Constraints
Satisfaction
Problems

Reversible
Logic

Classical
Oracle

Questions often asked
• How practical is this?

• When we will have large quantum computers?

• Error Detection and Correction.

• Can we combine the powers of Invertible Logic and Reversible Logic in Quantum
technology to create superior algorithms?

• What is the methodology? What is the math?

1. Combinatorics, coding theory, numeric representations

2. Algorithms and Complexity

3. Spectral Methods

4. Digital Design

5. Algebra, graph theory, partition theory, cube calculus theory

• We do not discuss:

– Quantum Technologies

– or Magnetic Spin Technologies

• I welcome any question!

